Package: wsrf 1.7.30

He Zhao

wsrf: Weighted Subspace Random Forest for Classification

A parallel implementation of Weighted Subspace Random Forest. The Weighted Subspace Random Forest algorithm was proposed in the International Journal of Data Warehousing and Mining by Baoxun Xu, Joshua Zhexue Huang, Graham Williams, Qiang Wang, and Yunming Ye (2012) <doi:10.4018/jdwm.2012040103>. The algorithm can classify very high-dimensional data with random forests built using small subspaces. A novel variable weighting method is used for variable subspace selection in place of the traditional random variable sampling.This new approach is particularly useful in building models from high-dimensional data.

Authors:Qinghan Meng [aut], He Zhao [aut, cre], Graham J. Williams [aut], Junchao Lv [aut], Baoxun Xu [aut], Joshua Zhexue Huang [aut]

wsrf_1.7.30.tar.gz
wsrf_1.7.30.zip(r-4.5)wsrf_1.7.30.zip(r-4.4)wsrf_1.7.30.zip(r-4.3)
wsrf_1.7.30.tgz(r-4.5-x86_64)wsrf_1.7.30.tgz(r-4.5-arm64)wsrf_1.7.30.tgz(r-4.4-x86_64)wsrf_1.7.30.tgz(r-4.4-arm64)wsrf_1.7.30.tgz(r-4.3-x86_64)wsrf_1.7.30.tgz(r-4.3-arm64)
wsrf_1.7.30.tar.gz(r-4.5-noble)wsrf_1.7.30.tar.gz(r-4.4-noble)
wsrf.pdf |wsrf.html
wsrf/json (API)
NEWS

# Install 'wsrf' in R:
install.packages('wsrf', repos = c('https://simonyansenzhao.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/simonyansenzhao/wsrf/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

cpp

4.89 score 14 stars 11 scripts 295 downloads 10 exports 1 dependencies

Last updated 2 years agofrom:f0f9e7c3de. Checks:1 OK, 7 NOTE, 3 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 05 2025
R-4.5-win-x86_64WARNINGFeb 05 2025
R-4.5-mac-x86_64NOTEFeb 05 2025
R-4.5-mac-aarch64NOTEFeb 05 2025
R-4.5-linux-x86_64NOTEFeb 05 2025
R-4.4-win-x86_64WARNINGFeb 05 2025
R-4.4-mac-x86_64NOTEFeb 05 2025
R-4.4-mac-aarch64NOTEFeb 05 2025
R-4.3-win-x86_64WARNINGFeb 05 2025
R-4.3-mac-x86_64NOTEFeb 05 2025
R-4.3-mac-aarch64NOTEFeb 05 2025

Exports:combinecombine.wsrfcorrelationcorrelation.wsrfimportanceoob.error.ratestrengthsubset.wsrfvarCounts.wsrfwsrf

Dependencies:Rcpp

A Quick Start Guide for wsrf

Rendered fromwsrf-guide.Rmdusingknitr::rmarkdownon Feb 05 2025.

Last update: 2022-03-13
Started: 2016-07-26

Readme and manuals

Help Manual

Help pageTopics
Combine Ensembles of Treescombine combine.wsrf
Correlationcorrelation correlation.wsrf
Extract Variable Importance Measureimportance importance.wsrf
Out-of-Bag Error Rateoob.error.rate oob.error.rate.wsrf
Predict Method for 'wsrf' Modelpredict predict.wsrf
Print Method for 'wsrf' Modelprint print.wsrf
Strengthstrength strength.wsrf
Subset of a Forestsubset subset.wsrf
Number of Times of Variables Selected as Split ConditionvarCounts.wsrf
Build a Forest of Weighted Subspace Decision Treeswsrf wsrf.default wsrf.formula